UNIT- II- CURRENT ELECTRICITY Important Formulae

1 Electric current $=\frac{charge}{Time}$ or $I = \frac{q}{t} = \frac{ne}{t}$ 2. In case of an electron revolving in a circle of radius r with speed v, period of revolution is $T = \frac{2\pi r}{v}$ Frequency of revolution, $v = \frac{1}{T} = \frac{v}{2\pi r}$, Current, $I = ev = \frac{ev}{2\pi r}$ 3. Ohm's law, $R = \frac{v}{l}$ or V = IR4. Current in terms of drift velocity (V_d) is $I = enAv_d$ 5. Resistance of a uniform conductor, $R = \rho \frac{I}{A} = \frac{ml}{ne^2 \tau A}$ 6. Resistivity or specific resistance, $\rho = \frac{RA}{l} = \frac{m}{ne^2 \tau}$ 7. Conductance $= \frac{1}{R}$ 8. Conductivity $= \frac{1}{Resistivity}$ or $\sigma = \frac{1}{\rho} = \frac{l}{RA}$ 9. Current density $= \frac{Current}{Area}$ or $j = \frac{I}{A} = env_d$ 10. Relation between current density and electric field, $j = \sigma E \text{ or } E = \rho j$ 11. Mobility $\mu = \frac{V_d}{E}$

12. Temperature coefficient of resistance, $\alpha = \frac{R_2 - R_1}{R_1(t_2 - t_1)}$

13. The equivalent resistance R_s of a number of resistances connected in series is given by

$$R_s = R_1 + R_2 + R_3 + \dots$$

14. The equivalent resistance R_p of a number of resistances connected in parallel is given by

$$\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$$

17

15. EMF of a cell, E = $\frac{W}{q}$

16. For a cell of internal resistance r, the emf is E = V + Ir = I (R + r)

17. Terminal p.d of a cell, $V = IR = \frac{ER}{R+r}$

18. Terminal p.d. when a current is being drawn from the cell, V = E - Ir

19. Terminal p.d. when the cell is being charged, V = E + Ir

20. Internal resistance of a cell, $r = R \left[\frac{E-V}{V}\right]$

21. For n cell in series, $I = \frac{nE}{R+nr}$

22. For n cells in parallel, I = $\frac{nE}{nR+r}$

23. Heat produced by electric current, $H = I^2 Rt$ joule = $\frac{I^2 Rt}{4.18}$ cal

24. Electric power, $P = \frac{W}{t} = VI = I^2R = \frac{V^2}{R}$

25. Electric energy, $W = Pt = VIt = I^2Rt$

26. Potential gradient of the potentiometer wire, $k = \frac{V}{I}$

27. For comparing e.m.f.s of two cells, $\frac{E_2}{E_1} = \frac{I_2}{I_1}$

28. For measuring internal resistance of a cell, $r = \frac{I_1 - I_2}{I_2} \times R$

29. For a balanced Wheatstone bridge, $\frac{P}{Q} = \frac{R}{s}$, If X is the unknown resistance $\frac{P}{Q} = \frac{R}{x}$ or $X = \frac{RQ}{P}$