UNIT-II- CURRENT ELECTRICITY Important Formulae

1 Electric current $=\frac{\text { Charge }}{\text { Time }}$ or $\mathrm{I}=\frac{q}{t}=\frac{n e}{t}$
2. In case of an electron revolving in a circle of radius r with speed v, period of revolution is $\mathrm{T}=\frac{2 \pi r}{v}$

Frequency of revolution, $\mathrm{v}=\frac{1}{T}=\frac{v}{2 \pi r}, \quad$ Current, $\mathrm{I}=\mathrm{ev}=\frac{e v}{2 \pi r}$
3. Ohm's law, $\mathrm{R}=\frac{v}{I}$ or $\mathrm{V}=\mathbb{I}$
4. Current in terms of drift velocity $\left(V_{d}\right)$ is $\mathrm{I}=\mathrm{enA} v_{d}$
5. Resistance of a uniform conductor, $\mathrm{R}=\rho \frac{I}{A}=\frac{m I}{n e^{2} \tau A}$
6. Resistivity or specific resistance, $\quad \rho=\frac{R A}{I}=\frac{m}{n e^{2} \tau}$
7. Conductance $=\frac{1}{R}$
8. Conductivity $=\frac{1}{\text { Resistivity }}$ or $\sigma=\frac{1}{\rho}=\frac{l}{R A}$
9. Current density $=\frac{\text { Current }}{\text { Area }}$ or $\mathrm{j}=\frac{I}{A}=$ en v_{d}
10. Relation between current density and electric field,
$\mathrm{j}=\sigma \mathrm{E}$ or $\mathrm{E}=\rho \mathrm{j}$
11. Mobility $\mu=\frac{V_{d}}{E}$
12. Temperature coefficient of resistance, $\alpha=\frac{R_{2}-R_{1}}{R_{1}\left(t_{2}-t_{1}\right)}$
13. The equivalent resistance R_{s} of a number of resistances connected in series is given by

$$
R_{s}=R_{1}+R_{2}+R_{3}+\ldots \ldots
$$

14. The equivalent resistance R_{p} of a number of resistances connected in parallel is given by

$$
\frac{1}{R_{p}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\ldots
$$

15. EMF of a cell, $\mathrm{E}=\frac{W}{q}$
16. For a cell of internal resistance r, the emf is $E=V+I r=I(R+r)$
17. Terminal p.d of a cell, $\quad \mathrm{V}=\mathrm{IR}=\frac{E R}{R+r}$
18. Terminal p.d. when a current is being drawn from the cell, $\mathrm{V}=\mathrm{E}-\mathrm{Ir}$
19. Terminal p.d. when the cell is being charged, $\mathrm{V}=\mathrm{E}+\mathrm{Ir}$
20. Internal resistance of a cell, $\mathrm{r}=\mathrm{R}\left[\frac{E-V}{V}\right]$
21. For n cell in series, $\mathrm{I}=\frac{n E}{R+n r}$
22. For n cells in parallel, $\mathrm{I}=\frac{n E}{n R+r}$
23. Heat produced by electric current, $\mathrm{H}=I^{2} \mathrm{Rt}$ joule $=\frac{I^{2} \mathrm{Rt}}{4.18} \mathrm{cal}$
24. Electric power, $\mathrm{P}=\frac{W}{t}=\mathrm{VI}=I^{2} \mathrm{R}=\frac{V^{2}}{R}$
25. Electric energy, $\mathrm{W}=\mathrm{Pt}=\mathrm{VIt}=I^{2} \mathrm{Rt}$
26. Potential gradient of the potentiometer wire, $\mathrm{k}=\frac{V}{I}$
27. For comparing e.m.f.s of two cells, $\frac{E_{2}}{E_{1}}=\frac{I_{2}}{I_{1}}$
28. For measuring internal resistance of a cell, $\mathrm{r}=\frac{I_{1}-I_{2}}{I_{2}} \times \mathrm{R}$
29. For a balanced Wheatstone bridge, $\frac{P}{Q}=\frac{R}{S}$, If X is the unknown resistance $\frac{P}{Q}=\frac{R}{X}$ or $X=\frac{R Q}{P}$
